

TASC Review of DePue OU4 Sampling Plan

Ryan Burdge, Skeo Solutions

Presentation Outline

1. Introduction to TASC

2. Risk Assessment 101

3. Lead Cleanup Goals

4. OU4 Plan

Introduction to TASC

Introduction to TASC

 Technical Assistance Services for Communities

EPA-sponsored program

 Independent services provided by Skeo Solutions

Introduction to TASC

Risk Assessment 101

What is Risk Assessment?

 Risk = chance of harmful effects to human health resulting from exposure to environmental stressor

 Risk Assessment = systematic approach to determine human health effects and environmental impacts associated with exposure to chemicals

Risk Happens When ...

- 1. Contaminants exist
- 2. Concentrations are high enough

3. There is a pathway for exposure (a way for people to come into contact with contamination)

4. There are receptors (people, animals, a sensitive ecosystem)

What is Risk Assessment?

Required by CERCLA

- Basis of whether a remedy is needed to control or eliminate:
 - contaminant source
 - exposure pathway
 - receptor
- Identifies health-based cleanup levels

Risk Assessment Process

Exposure Pathways

Ingestion

Skin Contact

No exposure = No risk

Exposure Assessment

- Components:
 - 1. Identify completed exposure pathways
 - 2. Estimate exposure point concentrations
 - 3. Calculate chemical dose

Incorporates default exposure assumptions

Exposure Assumptions

Exposure Factor	Residential Adult	Residential Child	Industrial/ Commercial
Body weight (kg)	70	15	70
Soil Ingestion rate (mg/day)	100	200	50/100
Inhalation rate (m ³ /day)	20	10	20
Skin Surface Area (cm)	5,700	2,800	3,300
Soil adherence factor (mg/cm²)	0.07	0.2	0.2
Exposure Frequency (days/yr)	350	350	250
Exposure Duration (years)	24	6	25

Human Risk Assessment Process

Toxicity Assessment

- Assessment of dose-specific effects from exposures
- Carcinogenic toxicity
 - Exposure has potential to result in cancer
 - Toxicity values described by a "cancer slope factor"
- Noncarcinogenic toxicity
 - Exposure above a threshold level could result in adverse effect
 - Toxicity values described by a "reference dose"

Human Risk Assessment Process

Risk Characterization

Carcinogenic chemicals

Non-carcinogenic chemicals

Risk Quantification

- Risk from all contaminants summed for each exposure pathway
- Risk is probability of cancer from exposure above risk from non-exposure
- General population cancer risk rate from all other causes is 1,000 to 100,000 times higher*:
 - (0.5 general risk) + (0.0005 site risk) = 0.5005 risk

COPC Screening Levels

Cleanup Goals

- Developed only for COCs
 - COCs: a subset of COPCs driving cleanup
 - COPCs triggering cumulative risk >10⁻⁴
 - COPCs triggering cumulative HI of 1.0

Final COCs and remedial goals established in ROD

Risk Management

Goal – reduce contaminant concentrations at point of exposure to acceptable levels by:

- Removing source
- Treating and containing contamination
- Eliminating exposure pathways

Risk Happens When ...

- 1. Contaminants exist
- 2. Concentrations are high enough

3. There is a pathway for exposure (a way for people to come into contact with contamination)

4. There are receptors (people, animals, a sensitive ecosystem)

Risk Assessment in Superfund

Feasibility Study

Remedial Investigation (RI)

Baseline risk assessment and risk-based cleanup goals Remedial
Action
Objectives

Refine cleanup goals

Detailed Analysis of Alternatives

Risk evaluation of remedial alternatives

Remedy Design and Implementation

Evaluate:

- Residual risk
- Demonstrate attainment
- Five-year reviews

Questions?

Lead Cleanup Goals

Lead and Risk

Risk assessment for lead is unique

No established toxicity or acceptable dose

 Regulated based on biomarker: blood-lead levels (BLL)

EPA Approach to Lead

- Models assess routes of exposure and determine the distribution of lead among body tissues
- Children/Residential Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK)
- Adults/Non-Residential Adult Lead Model (ALM)

EPA Approach to Lead

EPA considers BLL at or above 10
micrograms of lead per deciliter of blood
(μg/dL) as risk to children

- IEUBK model predicts soil concentrations of 400 mg/kg to be safe for 10 μg/dL BLL
- In 2012, CDC recommended 5 μg/dL as level of concern for children

New CDC BLL

5 μg/dL	10 μg/dL

Based on Current Model Defaults

Residential Sites

153 mg/kg

418 mg/kg

Based on Proposed Model Defaults

Residential Sites

162 mg/kg

599 mg/kg

IEUBK Model

 Links environmental lead exposure to BLL for children (0-7 years of age)

Exposure Component	calculates daily intake rate into the body from ingestion and inhalation of soil/dust, food, drinking water
Uptake Component	how much is actually absorbed in the body
Biokinetic Component	estimates transfer rates for lead moving between compartments and through elimination pathways to derive a predicted long-term steady state geometric mean BLL
Variability	estimates a plausible distribution of BLL for a given hypothetical population of known lead exposures

IEUBK Parameters

Media Concentrations	Soil	Site-specific data	
	Dust	Site-specific data or derived from soil concentration using model assumptions	
	Air (default)	Model default of 0.1 μg/m ³	
	Drinking Water (default)	Model default 4 μg/L	
Ingestion Rates	Soil/Dust	Model defaults recommended for each age	
	Diet		
	Ground Water	group (ranging from 0 to 84	
Inhalation Rate	Soil/Dust	months)	

Questions?

TASC Review of OU4 Plan

DePue CAG Concerns

- 1. OU4 Design Study and Pilot Study
- 2. "Bright-line" remedial goals
- 3. Sampling protocols
- 4. Lead cleanup levels
- 5. Arsenic cleanup levels

OU4 Design Study

 Superfund Accelerated Cleanup Model (SACM)

- Includes Presumptive Remedy to expedite planning process
 - excavation of soils

 Takes place of Remedial Investigation/Feasibility Study (RI/FS)

OU4 Design Study

- OU4 Design Study consistent with EPA guidance, but requires additions and revisions
- COPCs and bright-line goals identified appropriately
- Lacks explanation of decision-making process following sampling
 - IEPA recommended decision-making approaches in June 2012 letter

Soil Sampling

- IEPA approaches:
 - 1. Use of composite and discrete samples
 - Collect composite samples from each quadrant of yard
 - Discrete samples, depending results
 - 2. Use of discrete samples only
 - Sample every yard with a minimum of 10 discrete samples
- Confirmation sampling

Composite Sampling

SCENARIO 3: RECOMMENDED MINIMUM SOIL SAMPLING IN YARDS GREATER THAN 5,000 SQUARE FEET.

OU4 Pilot Study

 OU4 Pilot Study designed to expand understanding of extent of contamination

 Sampling of randomly selected subset of residential properties

Data not yet available

OU4 Pilot Study

 Statistical assessment of 0-1" deep and 1-6" deep soil concentrations

 If statistically not different, final plan will lump and collect 0-6" deep samples

 CAG may want to consider requesting that final plan retain 0-1" and 1-6" sample depths

Soil Sampling Depth

Lead Cleanup Levels

- Design Study lists 400 mg/kg
- IEPA requested RPs apply CDC's lower BLL
 - If applied, goal would be ~150-165 mg/kg
 - CDC BLL not yet adopted by EPA, but is under consideration
- CAG may want to consider supporting IEPA's recommendation to apply lower BLL to OU4 soils

Arsenic Cleanup Levels

- IEPA requires site cleanup to background concentrations
 - 11.6 mg/kg for DePue

RPs proposed 20 mg/kg

 CAG may want to consider supporting IEPA's recommendation to clean up to background

Arsenic Cleanup Levels

	IEPA-Proposed Background Levels	RP-Proposed Levels
Cleanup Level	11.6 mg/kg	20 mg/kg
Risk	1.90E-05	3.28E-05
Hazard Index	0.34	0.59

Arsenic Cleanup Levels

OU4 Next Steps

Pilot Study sampling data shared	Spring 2014
Design Study Work Plan	Spring 2014 finalization
Proposed Plan - Public comment period	Spring/Summer 2014
Record of Decision/Consent Order	Summer 2014
Design Study Implementation	Fall 2014

OU4 TASC Summary

- Design Plan requires additions and revisions
- CAG should consider:
 - Retaining the 0-1" soil sample depth in final design plan
 - Pursuing most stringent arsenic and lead cleanup goals
- CAG should review Pilot Study findings and final Design Plan

Questions?

Exposure Assessment

- Exposure parameters
 - Terms used to calculate an average daily intake or "dose" per chemical per media per receptor for a specific exposure time
- Exposure parameters vary per receptor
 - i.e.; for an adult the default exposure duration is 24 years, while for a child 6 years is commonly used

Pilot Study Objectives

- Obtain additional soil data to focus the full-scale soil investigation program,
- Determine the generalized depth of potential plant-related material,
- Determine if the lead concentration in the fine soil fraction is different from the lead concentration in the total sample,
- Determine if concentrations in the 0 to 1-inch soil samples are similar to concentrations in the 1 to 6-inch sample, thereby eliminating the need for collection of the 0 to1-inch sample during implementation of the Design Study. If the data allow for eliminating the 0 to 1-inch sample interval, future sampling will be conducted from 0 to 6-inches,
- Determine the ability to refine the list of Human Health Constituents of Potential Concern (HCOPCs),
- Determine if chromium is present in the hexavalent or trivalent forms,
- Determine the adequacy of X-ray fluorescence (XRF) technology and define the terms of its use during implementation of the Design Study,
- Understand the likely scope of the full-scale soil remediation program,
- Gain experience with working in the community, and
- To evaluate the practicality of the assumptions and plans outlined in the Design Study.